
University of Plymouth
School of Engineering, Computing, and

Mathematics

COMP3000
Final Stage Computing Project

2020/2021

ALabDaC - Automated Lab Book Data
Collection

Gabryel Mason-Williams
10574626

BSc (Hons) Computer Science

Acknowledgements

I want to thank my supervisor at Plymouth, David Walker, for al-
lowing this project to go ahead, supervising it and for being very helpful
during my time at Plymouth.

I also want to thank my supervisors at the Rosalind Franklin Institute
(RFI), Laura Shemilt and Mark Basham, for supervising this project and
making me an active member of the Artificial Intelligence theme. It has
been a joy doing this project with you.

I also want to thank my family and friends who have been here for the
ups and downs of this project and my time at Plymouth. As always, I am
very grateful to have you in my life.

Last but certainly not least, I would like to thank Frank, my dog, who has
been with me every step of the way this year, including interrupting the
testing, meetings and pretty much everything. Without him, this project
certainly wouldn’t have succeeded. Frank is the real MVP.

1

Abstract

The ALaBDaC system was a collaboration with the Rosalind Franklin
Institute that aimed to solve the problem of paper lab books being chal-
lenging to access, review, search through, and hard to practically backup.
This dissertation covers the software development of the proof of con-
cept system ALaBDaC. Part one outlines the background to the problem
with the aims and objectives of the project, the legal, ethical, social and
professional issues surrounding its development. Part two discusses and
evaluates the hardware and methods used to create the system. Part
three provides a postmortem of the development process and assesses the
technologies, sprints, methodologies, and testing. Concluding with how
the project effectively met the objectives, ergo solving the problem and
outlining the area of future development.

2

Information

Word count: 9842

Github: private repository contact for access https://github.com/rosalindfranklininstitute/
alabdac

3

https://github.com/rosalindfranklininstitute/alabdac
https://github.com/rosalindfranklininstitute/alabdac

Contents

1 Introduction 8

2 Background, Objectives and Aims 9
2.1 Background . 9
2.2 Aims . 9
2.3 Objectives . 9

3 Legal, Social, Ethical and Professional issues 11
3.1 Legal and Professional . 11
3.2 Social and Ethical . 11

4 Hardware 12
4.1 Components . 12

5 Methods and Discussion 13
5.1 Intelligent Data Capture . 13

5.1.1 What the problem is and objectives 13
5.1.2 Literature Review . 13
5.1.3 Implementation . 14
5.1.4 Results . 16

5.2 Intelligent Data extraction . 18
5.2.1 What the problem is and objectives 18
5.2.2 Literature Review . 18

5.2.2.1 Text Recognition 18
5.2.2.2 Synthetic Dataset Generation 18

5.2.3 Implementation . 18
5.2.4 Results . 24

5.3 Data transfer . 27
5.3.1 What the problem is and objectives 27
5.3.2 Literature Review . 27

5.3.2.1 Image formats 27
5.3.2.2 Storing relevant data 27
5.3.2.3 Exporting data 28

5.3.3 Implementation . 28
5.3.4 Results . 31

5.4 The System . 32
5.4.1 RFID Reader . 32
5.4.2 GUI . 33
5.4.3 Overall Design . 35

6 Project Post-Mortem 37
6.1 Technologies . 37

6.1.1 Hardware . 37
6.1.2 Programming Language 37

4

6.1.2.1 Python . 37
6.1.2.2 Bash . 37

6.1.3 Image manipulation . 37
6.1.3.1 Pillow . 37
6.1.3.2 OpenCV . 38
6.1.3.3 Numpy . 38
6.1.3.4 Piexif . 38

6.1.4 Data Transfer . 38
6.1.4.1 Boto3 and botocore 38

6.1.5 Graphical User Interface (GUI) 38
6.1.5.1 Tkinter . 38

6.1.6 Machine Learning . 39
6.1.6.1 YOLO . 39
6.1.6.2 ScrabbleGan . 39

6.2 Project management . 39
6.2.1 Supervisor Meetings . 39

6.2.1.1 Plymouth . 39
6.2.1.2 RFI . 40

6.2.2 Version Control . 40
6.2.3 Code Management . 41
6.2.4 Dependency Management 42
6.2.5 Design Principles . 42
6.2.6 Sprint Plans . 43

6.2.6.1 Sprint Zero: Setup and kit ordering 43
6.2.6.2 Sprint One: Install Setup: GUI and Read RFID,

MVP . 43
6.2.6.3 Sprint Two: Data Capture 44
6.2.6.4 Sprint Three: Data Extraction 44
6.2.6.5 Sprint Four: Data exporter 45
6.2.6.6 Sprint Five: All Together 46

6.3 Methods . 46
6.3.1 Intelligent Data Capture 46
6.3.2 Intelligent Data Extraction 47
6.3.3 Data transfer . 47
6.3.4 System . 47

6.4 Testing and validation . 47
6.5 Overall . 49

7 Conclusion 50

A Parts 59

B Intelligent Data Capture captures 60

C Sprints - Weekly reporting 65

5

D Requirements 76

E Minimal viable product description 77

F Review from the Rosalind Franklin Institute 78

List of Tables

1 Artificial Dataset image and annotations folder structure, where
image/[train/test]/*.jpg maps 1-to-1 to annotations/[train/test]/*.txt 22

2 Example Annotation and format meaning: the centre and width
and height values are normalised so they are between 0 and 1,
the original values can be returned by multiplying them by the
width and height of the test/train image. 22

3 Example key-value pair metadata of an alabdac image; userID,
hostname, keywords (word detected during data extraction), bound-
arybox (the boundary box of the words), confidence (percentage
recognition of the word identified) and the time the image is
saved. 30

4 Manual Tests . 48
5 Detailed Parts List . 59

List of Figures

1 Mock lab setup, with camera directly over the lab book. 14
2 Intelligent Data Capture flow Diagram 16
3 Example ScrabbleGan generated words 19
4 Word manipulation process . 20
5 Example synthetic images . 21
6 Synthetic data vs Lab book with words written in it. 21
7 Synthetic data generation pipeline for creating machine learning

models to recognise human handwriting. 23
8 Intelligent Data capture UML diagram 24
9 YOLOv3 detection’s against human written words on a lab book 25
10 Metadata Parser UML . 29
11 Data exporter package UML diagram 31
12 RFID Reader Flow Diagram . 32
13 RFID Reader UML . 33
14 GUI RFID event flow diagram 34
15 GUI Display . 34
16 Multiprocessing setup of ALaBDaC 35
17 System Architecture: Started and Stopped with an RFID Card,

the processing is on the Jetson Nano and storage is in RFI’s data
store. 36

18 Branch and merge version control diagram 41

6

19 Example detailed commits and pull request on ALaBDaC repos-
itory . 41

20 Example Doc String from ALaBDaC code base 42
21 Data exporter pull request code review. 49
22 Video one captures with border threshold of 5% and frame change

threshold of 2500 . 60
23 Video two captures with border threshold of 5% and frame change

threshold of 2500 . 61
24 Video three captures with border threshold of 5% and frame

change threshold of 2500 . 62
25 Video four captures with border threshold of 5% and frame change

threshold of 2500 . 63
26 Video five captures with border threshold of 5% and frame change

threshold of 2500 . 64
27 Project Requirements list . 76
28 Minimal Viable Product (MVP) outline, to allow for research and

investigation of techniques to improve the system to begin. . . . 77
29 Feedback from Dr Laura Shemilt - Research Software Engineer

at RFI . 78
30 Feedback from Dr Mark Basham - Science Director Artificial In-

telligence at RFI . 79

7

1 Introduction

This project is in partnership with the Rosalind Franklin Institute (RFI). At
RFI, they have laboratories where experiments take place. Under The Good
Laboratory Practice Regulations 1999 [1], the Freedom of Information Act 2000
[2], and the Data Protection Act [3], it is essential that Laboratories keep and
maintain accurate records of all experiments conducted within the lab [4]. With
that paper lab books are a valuable tool used at RFI to record the experi-
ments. However, they have many downsides, such as challenging to access,
review, search through, and hard to practically backup. The following report
demonstrates and evaluates the software solution that attempted to solve this
problem.

8

2 Background, Objectives and Aims

2.1 Background

This project is in partnership with the Rosalind Franklin Institute (RFI). RFI ”is
a new national institute, funded by the UK government through UK Research
and Innovation (UKRI), dedicated to bringing about transformative changes
in life science through interdisciplinary research and technology development”
[5]. RFI’s ”work is focused into five complementary themes, which together
will produce technologies which allow us to see the biological world in new
ways, from single molecules to entire systems. This insight will speed up drug
design and development, and push forward our understanding of human health
and disease” [5]. This project is associated with the Artificial Intelligence and
Informatics theme but is directly relevant to the other themes at RFI, which
use lab books in the lab environment.

Under The Good Laboratory Practice Regulations 1999 [1], the Freedom of
Information Act 2000 [2], and the Data Protection Act [3], it is essential that
Laboratories keep and maintain accurate records of all experiments conducted
within the lab [4]. Therefore, researchers take meticulous notes of their work in
the lab, which is usually written into lab books. Electronic lab books such as
”Lab Folder”[6] and ”labguru” [7] are sometimes used within certain lab envi-
ronments. However, some labs require strict contamination control within RFI,
especially in labs where there are chemical and biological hazards. These labs
give practical restrictions on using computers as the sharing of computer hard-
ware such as keyboards or mouses is infeasible due to potential contamination.
This means that the document of choice is a paper lab book. However, the
downside of using a paper lab book is, of course, that lab books are harder to
share and search at a later date, as well as the fact that lab books within strict
contamination controlled labs are not allowed to leave the lab, therefore making
the lab book data locked to the lab creating an issue where the data is not easily
accessible, reviewable, or searchable as well as being difficult to practically back
up.

2.2 Aims

The project aims to develop and investigate an automated way to collect lab
book information as the user writes and automatically record it to a central
database, thus removing the issue of lab book data being locked to the labs and
allowing for a digital representation to be stored and searched through at a later
date.

2.3 Objectives

This is a proof of concept and research based project with the following being
the core objects:

9

• The project needs to be done in a low-cost way, below £300, so that it can
be implemented across RFI.

• It needs to be activated and deactivated with an RFID card reader, as
this is the activation method used within RFI.

• There should be a method to display that the device is capturing data.

• Relevant information needs to be collected and extracted from the lab
books.

• Results will be uploaded to the RFI’s S3 data store with appropriate
metadata.

• Extensible and maintainable code.

Ultimately, the objective is see whether these objectives are feasible and
possible, as if this is shown to be promising or achievable, then RFI will continue
to develop this project further.

10

3 Legal, Social, Ethical and Professional issues

When designing and creating a system such as ALaBDaC, where the primary
objective is to collect data, there are many legal, social, ethical and professional
issues to consider. This section goes into detail about potential issues and
expresses how they are overcome.

3.1 Legal and Professional

The Data Protection Act of 2018 [3] is the UK’s implementation of the General
Data Protection Regulation (GDPR) [8]. The Data Protection Act of 2018
states how user data must be maintained, looked after and used within the UK.
For the ALaBDaC system, the data is stored and transferred securely to an s3
data store using a write-only key, which means if someone was to get hold of the
physical ALaBDaC system, they would not be able to access the user data with
those keys, therefore adhering to data protection act. The data is then stored
in accordance with RFI’s data policy, which follows the FAIR principles set by
UKRI [9].

This project will require the use of RFI’s computing infrastructure to train
machine learning models, store data, and run the project. Therefore, it is essen-
tial, professionally and legally, that the computers are used in accordance with
the law so that the computer misuse act 1990 [10] is not broken. When using
RFI’s infrastructure, only computers and data that the developer is authorised
to use will be used, and nothing that can facilitate computer misuse will be
used/ implemented/developed.

As the project is a collaboration between the developer who represents The
University of Plymouth as a student and the British Computer Society (BCS)
, as the project is accredited by the BCS, it is essential that throughout the
project that any interaction with the student adheres to their respective code
of conducts [11], [12]. This will ensure that a healthy, effective and professional
relationship is fostered during the collaboration with RFI.

3.2 Social and Ethical

The system has social implications for the aspect of collecting images, where
some users may not be comfortable with this data being collected. Thus this
system will be opt-in by default and will require users interaction before any
recording takes place. This will ensure that users have made an active decision
to use the system. This opt-in will only last for as long as the session is. When
they end the session they will have effectively opted out and they will have to
opt-in to the system every time they want to use it. The access and removal of
the data will then be managed by RFI’s data policy.

11

4 Hardware

To be able to meet the objectives of the project hardware was required. This
section goes into the reasoning behind the hardware used.

4.1 Components

A single-board computer is required to run the system—there were two com-
pelling options for this project, the Jetson Nano [13] and the ”Raspberry Pi
model 4 Model B”[14]. The Jetson Nano is a single board computer with a
Graphics Processing Unit (GPU) developed by Nvidia for embedded AI appli-
cations. The ”Raspberry Pi 4 Model B” is a single-board computer with eight
GB of RAM. Both were considered; however, it was decided that the lack of the
GPU from the ”Raspberry Pi 4 Model B” would have lead to a solution where
AI inferencing would have to take place in the cloud. Using the cloud would
make the project have a continual cost instead of the fixed cost of just the kit.
Therefore the Jetson Nano was used with a 128GB SD (Secure Digital) to run
the OS and 4 amp power supply.

A camera is required to capture the data; there were two main options
the ”Raspberry Pi High-Quality Camera Module” (RPIHQCM) [15] and the
”Raspberry Pi Camera Module V2” (RPCMv2) [16]. The RPIHQCM offered
a 12MP sensor, whereas the RPCMv2 offered an 8mp sensor; therefore, as this
project needs to capture high-quality images, the RPIHQCM was used with a
6mm wide-angle lens.

A display is required to show the output from the camera; therefore, a 5-
inch screen was used as it was agreed with RFI. This would be an appropriate
size to display the camera feed. To be able to read the RFID input, an RFID
card reader was also purchased and to connect to the wifi within the lab, a wifi
dongle was bought.

The total price of the unit, plus wiring accessories, came to £277.20 at the
time of purchase, which met the objective of the unit costing less than £300.
Detailed parts list can be seen in Appendix A

12

5 Methods and Discussion

This chapter goes into detail about the methods implemented, outline the prob-
lem and objects for each method, then reviewing the current literature and
finally discussing the implementation and its results.

5.1 Intelligent Data Capture

5.1.1 What the problem is and objectives

For this system to effectively extract information and present useful data from
the lab books, clear and unobstructed images of the lab book need to be taken,
i.e without hands or other objects within the image. The images need to also
capture changes made to the book as they are made throughout the book to help
record a timeline of changes, that can be later searched through. The objectives
are as follows:

• Capture unobstructed images

• Capture images after a change is made to the lab book

• Capture as few images as possible

• Clear and presentable images.

5.1.2 Literature Review

Computer vision is the field of computer science that aims to train computers
to recognise and understand a visual stimulus[17]. Computer Vision aims to
tackle many areas to do with vision such as; classification, segmentation, object
tracking and object detection. Classification is the act of trying to workout
what an image is, segmentation is the act of separating an image into constitute
parts, object tracking is the act of following an object as it moves across a set
of images or frames, and object detection is the act of identifying a specific
object and classifying it within the image. There are many different techniques
to solve computer vision problems from deep learning[18], to classical image
processing methods which include methods such as Canny Edge Detection [19],
Hough transform[20] and Hue Saturation and Value (HSV) space colour seg-
mentation[21].

Even though deep learning has had success within many domains of com-
puter vision [22], there are still applications where classical methods work ef-
fectively in situations with limited data or small compute resource, such as the
report ”Fast and Accurate Document Detection for Scanning” [23] where they
use edge detection, then hough transform, to detect the lines on the page, and
then computed the intersections to find potential corners. These corners are
then processed to find the best possible quadrilateral. This method was able to
accurately detect documents for scanning, and was implemented in the Dropbox
doc scanner.

13

5.1.3 Implementation

As a lab environment could not be used for development due to lockdown re-
strictions [24], a mock environment was created with a white sheet representing
the table or desk. The camera was positioned directly above and to aid the user
in placing the lab book in the center of the camera, a green border was placed
around the lab book, see figure 1. The colour green was used for the border as
it is not a colour used within the RFI labs.

Figure 1: Mock lab setup, with camera directly over the lab book.

For the system to capture clear images of the lab book, it needs to detect
when something is happening to the lab book, i.e. a user writing, to know
when to stop recording. A supervised object detection method of detecting
hands as they enter the scene was considered. However, it was not implemented
as RFI did not have a dataset of the scientists writing in lab books from a
bird’s eye view; other hand datasets such as the Visual Geometry Group hand
dataset[25], could have been used for hand detection. Although, due to time
constraints, this was not investigated as the scientists have to wear gloves within
specific environments, which would have potentially limited the effectiveness of
this technique due to the distributional shift problem[26]. Therefore classical
image processing methods were used to classify when a page was clear or not,
as these would not require a labelled dataset to train and instead, work from
the information in the environment created.

As there will always be a green border around the lab book, this information
can be used to detect when the lab book is covered, as the user will have to
cross this border in order to write inside the lab book. Since the border is the
only thing expected to be green, a colour separation technique is implemented
to detect the border.

The input stream from the camera has a three colour channel; Red Blue
Green (RGB). However, the green border is not consistently the same RGB
value all around due to lighting effects; therefore, the frames are colour separated
using the HSV colour segmentation technique to find the border instead of an
RGB separation technique, as this method allows for the separation of different
colours through lighting intensity. This method works by converting the frame

14

into an HSV representation and then thresholding between lower and upper HSV
values returning a black and white image, where the white pixels represent the
colour captured through segmentation. These white pixels are then counted to
form a value of the border.

The majority of the background does not change between frames, only chang-
ing when the scientist’s hand enters the scene to write in the lab book or change
the page. Ergo a background subtraction method can be used to detect when a
scientist is writing on/in the lab book. The BackgroundSubtractorKNN method
provided by OpenCV [27] is used; this method works by creating a background
model that is continually updated such that if the background changes, it can
adapt, the current frame is then taken from the background model and passed
through a threshold, thus leaving the foreground image. Areas that have not
changed are left black, and areas that have changed are white. The white pixels
are calculated to create a value for the amount of change in the frame.

As the frames may contain artefacts or random noise, image stacking was
used to improve the quality of the images captured, which will make data ex-
traction easier as the images will be clearer. Image stacking is the act of taking
the average of series of images to reduce the signal to noise ratio [28]. The image
stacking was implemented using a ring buffer of size 5 so that this process does
not use too much RAM as, without this limit, the device will crash as it will fill
up the memory; it also ensures that the 5 most recent frames can be stacked,
after every capture the image stack is cleared.

These methods are used together to form the intelligent data capture; an
initial border value is calculated during an initialisation phase, which takes
the average of the border over 60 frames; this border value is then used as the
baseline. Then the border and frame change is calculated for each process frame
(a smaller resolution of the frame to be stacked); if the border is above the
threshold or the frame change value is below the threshold, then the save frame
(full resolution image) is added to the frame stack. Otherwise, the frames
are stacked, and an image is returned. This process is shown in figure 2. Its
important to note that this method captures the frames before an event so the
last change to the lab book will not be captured using this technique. It is also
worth noting that this methods effectiveness is subject to the initial thresholding
values and will require tuning for each environment it is deployed within.

15

Figure 2: Intelligent Data Capture flow Diagram

5.1.4 Results

This implementation was tested against a set of 5 videos, in which a user writes
on a page ”test1, test2, test3, test4” with test[1-2] on the left page and test[3-4]
on the right-hand page. There are four key events in these videos (each time
the user writes on the lab book). When using a border threshold of 5% and
difference in frames threshold of 2500, this method was able to capture all four
key events for all the videos, with the outputs, only capturing the lab book, see
Appendix B for captures. With those results, this implementation effectively

16

meets the objectives of capturing unobstructed images of the lab book after a
change is made to the lab book while keeping the images taken to a minimum and
producing clear and presentable images, through the use of classical computer
vision techniques.

17

5.2 Intelligent Data extraction

5.2.1 What the problem is and objectives

Now the data can be effectively collected with a clear lab book view, the task is
to try and extract any relevant information from the lab book. In this section the
focus is to extract the keywords written within the lab book, as this information
will be useful in aiding searching at a later date. The objectives are as follows:

• A method to recognise and extract any keyword from the page

5.2.2 Literature Review

5.2.2.1 Text Recognition
Handwriting recognition is considered a complex problem for machine learning
compared to machine text because there is a considerable variation in handwrit-
ing styles from person to person [29]. Humans do not always write in a straight
line; handwriting can be joined, a mix of capitalisation of letters, etc. This can
be summed up if people struggle to read their own and others’ handwriting, then
how is a computer expected to do any better. There are two different meth-
ods of handwriting recognition offline and online [30]. Online methods involve
using digital input and using the information as the user writes; often, these
methods have a high level of accuracy. Offline methods involve recognising text
once written down, so the only information is the image of the written text.
Within these methods, there are two techniques-character and word recogni-
tion. Character recognition works by recognising individual characters to form
a word, whereas word recognition works by recognising the whole word. Offline
handwriting recognition problems often use different techniques; however, the
highest accuracy is achieved through convolutional neural networks (CNN) [31].

5.2.2.2 Synthetic Dataset Generation
Synthetic dataset generation is the method of creating a dataset that closely
represents real world data [32]. Synthetic handwriting datasets have been used
been used to produce high recognition accuracy in both character and word
classification [33], [34].

5.2.3 Implementation

The objective of the intelligent data extraction method is to recognise and ex-
tract relevant keywords from a lab book image. Therefore, an offline computer
vision approach is required to identify the keywords. Here an object detection
algorithm is appropriate as the problem requires finding and classifying specific
image data. Current object detection algorithms use supervised deep learning
[22]. Therefore a labelled dataset is needed to train them.

As there is not a pre-existing handwritten dataset for all words in the En-
glish language, the human handwriting synthesiser ScrabbleGAN [35] was used.
ScrabbleGAN is a state of the art semi-supervised handwriting synthesiser de-
signed to generate images of words of arbitrary length with different handwriting

18

styles. ScrabbleGan was trained for 200 epochs using a dataset formed from the
IAM dataset [36] for the handwritten words and the English-words dataset [37]
for the lexicon. The training produced a model that was capable of producing
images that looked liked realistic handwriting, as demonstrated in figure 3. This
model allows for the creation of a dataset of arbitrary size, including any words.

(a) tube (b) centrifuge (c) synchrotron (d) flask

(e) ml (f) cell (g) imaging

Figure 3: Example ScrabbleGan generated words

As shown in figure 3, the ScrabbleGan output data is perfect for a classi-
fication machine learning problem. However, the lab book images are not of
singular words,they are instead of many words on a page. Thus the data needs
to be manipulated to represent the problem the object detection algorithm will
face. For an object detection algorithm to perform well outside of the initial
training phase, the dataset on which it is trained and tested on should resemble
the data it will be used against. Therefore, the ScrabbleGan words need to be
manipulated and superimposed onto lab book backgrounds. The manipulations
implemented were: the removal of the backgrounds around the words, such that
the words have the same background as the lab book, resizing of words to rep-
resent different sizing in people’s writing, and the rotation of words across the
book so that different rotations are taken into account when people write. This
method of manipulation is demonstrated in figure 4.

19

Figure 4: Word manipulation process

The words are then pseudo-randomly superimposed onto the background
images, such that words do not overlap, and the backgrounds are cropped and
rotated to represent differences in lab book positioning; figure 5 displays example
artificial training or testing data, and figure 6 displays the example data next
to real data.

20

(a) synthetic image 0 (b) synthetic image 1 (c) synthetic image 2

(d) synthetic image 3 (e) synthetic image 4 (f) synthetic image 5

Figure 5: Example synthetic images

(a) Synthetic data (b) Example of words on page

Figure 6: Synthetic data vs Lab book with words written in it.

As the words are superimposed onto the background, the boundary boxes
and class annotation labels are already calculated. The resulting data is then
stored in the format shown in table 1 . The annotation method used follows the
format shown in table 2.

21

Folder Structure Contents
images/test/*.jpg Images for testing
images/train/*.jpg Images for training
annotations/test/*.txt Associated annotations for testing
annotations/train/*.txt Associated annotations for training

Table 1: Artificial Dataset image and annotations folder structure, where im-
age/[train/test]/*.jpg maps 1-to-1 to annotations/[train/test]/*.txt

Class x center y center Width of Box Height of Box
1 0.23 0.21 0.03 0.02
2 0.14 0.15 0.015 0.0124

Table 2: Example Annotation and format meaning: the centre and width and
height values are normalised so they are between 0 and 1, the original values
can be returned by multiplying them by the width and height of the test/train
image.

Due to the nature of synthetic data generation, the dataset can be, in the-
ory, any size, which is exceptionally advantageous as it allows for deep learning
object detection algorithms to be used, which often require a large dataset to
be performant [22]. Usually, these algorithms are characterised by their ability
to perform better the more data they are given to train [22] meaning, in the-
ory, provided a suitable model and enough training time. The words could be
accurately detected with an arbitrary amount of precision. Even though this
method can generate a large dataset, it is essential to note that the dataset is
artificial and not using any images of human written words and superimposed
onto the lab book. Therefore, due to the distributional shift problem[26], the
model’s performance on the test dataset will not truly reflect its performance
when dealing with human handwriting on a lab book background. This imple-
mentation yields a word detection pipeline that allows for any set of words to
be detected. The pipeline is demonstrated in Figure 7.

22

Figure 7: Synthetic data generation pipeline for creating machine learning mod-
els to recognise human handwriting.

The object detection algorithm, used within ALaBDaC is YOLOv3 [38].
YOLOv3 was used as it is able to do real time object detection on the Jetson
Nano. However, as RFI may in future want to use different object detection
algorithms, such as ”Faster R-CNN” [39] or ”Single shot multibox detector”
[40], an interface has been implemented as this ensures that future code will
have the same functionality; this is demonstrated in figure 8

23

<<Interface>>
IntelligentDataExtractionInterface

detect_classes(image, thresh)

<<Component>>
IntelligentDataExtractionYolo

config_file

data_file

weights

detect_classes(image, thresh)

_convert_image(image)

process_detection(detections)

bbox_for_image(bbox)

Figure 8: Intelligent Data capture UML diagram

5.2.4 Results

This implementation of creating an artificial dataset was then used to generate
a dataset consisting of 56,000 training images and 14,000 testing images with
20 keywords [synchrotron, cell, flask, tube, centrifuge, imaging, ml, acid, tongs,
forceps, microscope, pipette, concentration, stage, dilute, scale, minute, ther-
mometer, fluid, test], with 10 to 15 words on a background. This dataset was
used to train a YOLOv3 until a mean average precision score of 70% due to
time constraints. The model was then able to recognise some human written
words on a page, as displayed in figure 9.

24

(a) YOLOv3 detection’s for image one: Overall accuracy of
20% for words identified, with a 75% accuracy for detection’s
with a confidence over 75%.

(b) YOLOv3 detection’s for image two: Overall accuracy of
16.67% for words identified, with a 50% accuracy for detec-
tion’s with a confidence over 75%.

(c) YOLOv3 detection’s for image three: Overall accuracy
of 33.33% for words identified, no words where detected with
confidence over 75%

Figure 9: YOLOv3 detection’s against human written words on a lab book

25

As expected, this method is not perfect due to being trained and tested on
different data, to what it is ultimately deployed against. However, this does
demonstrate that this implementation does allow for any keywords to be recog-
nised and extracted from the lab book, if not with a few inconsistencies, effec-
tively meeting RFI’s requirements. With further improvement to the processing
of the words to look more realistic on the lab book background, this synthetic
data generation method could potentially achieve better results when deployed
against real lab book data. Ultimately this method shows promise and is worth
investigating further.

26

5.3 Data transfer

5.3.1 What the problem is and objectives

Once the image is captured and processed, the image and relevant data (meta-
data) (User info, Keywords detected, host machine, etc,) must be exported to
the central RFI data-store. RFI uses object storage to store their image data,
within an object store buckets/pools are created to partition the data, here an
s3 bucket is provided. This encompasses the problem of what file format to
use, how to store the relevant data and how to export it. The objectives are as
follows:

• Store high-quality images - maintaining original quality

• Image format viewable in a web browser

• Metadata easily read and written

• Export images to an s3 bucket

• Secure data transfer

5.3.2 Literature Review

5.3.2.1 Image formats
Image formats can be split into two main groups lossless and lossy formats, with
lossless formats using a compression mechanism that reduces the data footprint
while maintaining a perfect representation of the original image, and lossy for-
mats using a compression mechanism that perseveres the representation of the
original image however reduces image quality [41]. Examples of lossless formats
include TIFF [42], PNG [43] and WEBP [44], with lossy formats including JPEG
[45], TIFF[42]. These formats have varying support with different web browsers,
with TIFF not being displayed on any modern web browser and WEBP requir-
ing modern web browsers, however, JPEG and PNG have full support from all
mainstream web browsers [46].

5.3.2.2 Storing relevant data
Metadata is data the gives and describes information about the data. The paper
”Metadata practices for consumer photos” [47], explains how the Exchangeable
Image File Format (EXIF) is the standard for storing administrative metadata
in consumer photos and allows for effective searching through images by using
metadata tags that stores information such as photo descriptions, instead of
searching via the filename. EXIF is supported by JPEG [45], TIFF [42] formats
[45] and recently PNG format [43]. The PNG format also offers the addition
of metadata through textual data, in the form of text chunks, where the data
is stored in a key-value pair, i.e. ”Title”: ”This is a title”, the key-value pairs
can be created as needed the key however must be between 1 and 79 bytes long
[43].

27

5.3.2.3 Exporting data
S3 is a service for dealing with object storage across the web; it allows for
storing and retrieving objects, with many object storage providers provided
support for it, including Ceph [48], [49], MinIO [50]. Within S3, the objects
are stored in a bucket. An object consists of data and metadata with a unique
key for identification within a bucket. Amazon provides a REST S3 API for
interacting with the S3 service [51]. With this API, there are many ways data
can be exported to a bucket, including mounting the bucket as a file system
with an application such as S3FS-Fuse [52], syncing a folder to a bucket with an
application such as rclone [53], and using an application programming interface
(API) provided by amazon to communicate with the s3 instance such as Boto3
[54].

5.3.3 Implementation

An objective of the data exporter is to store the images in a high-quality format.
Therefore, a lossless format is required, which means the JPEG format cannot
be used due to doing lossy compression. As these images will also be displayed
through a web browser, the format also needs to be supported by modern web
browsers; thus, TIFF cannot be used, leaving WEBP and PNG, and as there is
more support for PNG, the PNG format is used.

The PNG format offers both text chunks and EXIF for adding metadata to
an image. Thus both methods of storing metadata were implemented through
an abstract metadata class, as demonstrated in figure 10. An abstract class
was used as it offers extensibility in the future and allows additional metadata
storing types to be implemented. With this, both and future parsers can expect
similar functionality when writing/reading data to/from the image.

28

Figure 10: Metadata Parser UML

Even though the PNG format supports both text chunks and EXIF, the
EXIF format is used within the system to remove reliance on the PNG format.
So that if a different file format is required in the future or there is a requirement
change, there potentially would not be the need to create another parser due
to EXIF’s broad support; however, this would be the case if PNG text chunks
were used. The metadata is created through an alabdac metadata formatter, as
this allows for a consistent metadata format. The alabdac metadata formatter
implements the metadata formatter interface so that other formats can be im-
plemented in future. The method create metadata returns a dictionary that can
be used passed in either EXIF parser PNG text chunks parser. The metadata
is stored as represented in table 3. When using the EXIF format, the metadata
is stored under the ’User Comment’ tag as a JSON string, whereas the PNG

29

text chunks stores the data as key-value pairs creating new keys.

Key Value
USERID 000000000000
KEYWORDS [cell]
BOUNDARYBOX [[110,98,115,95]]
CONFIDENCE [94]
HOSTNAME alabdac-01
TIME 05-04-2021-13-01-53-02

Table 3: Example key-value pair metadata of an alabdac image; userID, host-
name, keywords (word detected during data extraction), boundarybox (the
boundary box of the words), confidence (percentage recognition of the word
identified) and the time the image is saved.

As stated within the literature review, there are many different ways the
data could be exported to an s3 bucket. However, as this implementation needs
to be secure, the bucket keys are created as write-only. Write-only keys remove
any risk of a user deleting and seeing the information in the bucket if they got
access to the keys as they only allow writing. With this as a requirement, using
rclone to sync a folder would require the folder to be write-only for the user and
read and write for rclone, thus adding a possible attack vector. This would also
be a problem using s3fs. Therefore the Boto3 API library has been used to allow
for objects (images) from memory to be written to a bucket, thus removing the
write-only folder security issue and removing the IO overhead of writing to a
file. Boto3 also allows the s3 credentials to be stored as environment variables
instead of being passed as parameters to the system, allowing the system to be
more secure. It is also worth noting that the Boto3 API also allows metadata
to be attached to an object during transfer. Thus a metadata parser could
also have been implemented using this method, removing the issue of storing
metadata within the image itself, allowing all image formats to be supported.
However, this method was not implemented as it increases the dependency on
the Boto3 API, and the functionality would need to be supported in other data
transfer mechanisms.

As RFI may in future want to talk directly to the object storage provider, in
this case, Ceph, an interface has been implemented as this ensures that future
code will have the same functionality; this is demonstrated in figure 11

30

Figure 11: Data exporter package UML diagram

5.3.4 Results

The implementation effectively satisfied the initial objectives by using the loss-
less PNG image format and the effective use of EXIF, which allows for different
file formats to be used in future if the requirements of the system change. The
metadata creator creates an easy way to ensure all the data parsed to the meta-
data parsers in the correct format that is easily readable. The data exporter
meets the objective of being able to export images to the s3 bucket effectively
and securely, through the use of environment variables and exporting objects
from memory.

31

5.4 The System

This section discusses the system’s overall design, activation of data capture,
display, and how the different methods come together.

5.4.1 RFID Reader

A requirement of the system is that it is activated through an RFID card.
Therefore, an RFID reader is required to start and stop the program. The
RFID reader class checks to see if the RFID code is the correct length and then
checks to see if it is within the allowed list provided. If that is passed, it then
checks if the system is not active (not recording), then the system returns True
and changes active to True; if the system is active (recording) and it is the same
RFID card, then it returns False and changes active to False. This process is
displayed in figure 12.

Figure 12: RFID Reader Flow Diagram

As RFI will in future want to talk directly to their Lightweight Directory
Access Protocol (LDAP) server instead of a text file containing the allowed users
held on the machine, an interface has been implemented as this ensures that
future code will have the same functionality; this is demonstrated in figure 13

32

Figure 13: RFID Reader UML

5.4.2 GUI

An objective of the system is to display the camera feed and inform the user
when it is recording; a graphical user interface (GUI) is required. A simple GUI
was implemented in TKinter[55]. The GUI displays ”TAP to start” as well as
a small resolution of the camera feed. When the RFID card is correctly read,
it displays ”Recording” and initialises the intelligent data capture method to
calculate the initial border, then starting the capture frame thread, which runs
the intelligent data capture. This method is shown in Figure 14. When the
same RFID card is reread, ”TAP to start” is displayed again. Figure 15 shows
the two separate modes of the GUI.

33

Figure 14: GUI RFID event flow diagram

(a) Display when not recording (b) Display during recording

Figure 15: GUI Display

34

5.4.3 Overall Design

ALaBDaC runs solely on the Jetson Nano using two processors, one processor
for the GUI and intelligent data capture, and the other for the data processing,
including intelligent data extraction, metadata writing, and data exporting.
The GUI and intelligent data capture are on the same process as the user must
be informed when data is being captured. However, the data processing can
be done at any time and can take a while to run, so it is placed on a different
processor. This also means that if the GUI crashed, data would still be processed
but not captured. When the RFID reader activates the recording, the data
captured from the intelligent data capture and the last frame (when recording
stops) is passed to the data processing process via a multiprocessor queue; this
is displayed in figure 16.

Figure 16: Multiprocessing setup of ALaBDaC

All of the data processing happens in memory on the Jetson Nano such that
no data is written to the SD card; once the images are processed,they are then
exported to the S3 data store, as shown in figure 17.

35

Figure 17: System Architecture: Started and Stopped with an RFID Card, the
processing is on the Jetson Nano and storage is in RFI’s data store.

36

6 Project Post-Mortem

6.1 Technologies

There were many different technologies used throughout this project; this section
goes into detail about each dependency, disusing what is it, why it was used,
and then a reflection on its use.

6.1.1 Hardware

The hardware used in this project was effective, at helping achieve the overall
objectives. The GPU on the Jetson Nano was very useful as it allowed the
AI inference to be run on the board itself, which was the primary reason the
Jetson Nano was used over the Raspberry Pi 4 Model B. The Camera and Lens
was effective and collection high resolution images even though it did require
hardware and software modifications to work. In future the Arducam Camera
IMX477 HQ Camera Module [56] should be used as it does not require the
hardware modification step, and does not significantly increase the cost of the
unit. The RFID reader worked effectively and achieved the goal of reading the
RFID cards. Overall the hardware, selected was good and was effective and
within budget.

6.1.2 Programming Language

6.1.2.1 Python
Python is a high level, interpreted programming language [57] and was consid-
ered due to the vast amount of packages and widespread support, with PyPI
supporting over 300 thousand projects [58]. However, there were questions
around Python performance due to limited resources on the Jetson Nano and it
being an interpreted language. Therefore the C programming language, which
is a low-level compile language [59], was considered as it would have allowed
for specific hardware acceleration and would potentially make better use of the
hardware. However, ultimately Python was used for this project as it allowed
for quick and easy development due to the developer’s previous experience with
the language.

6.1.2.2 Bash
Bash is a command language, and UNIX shell provided [60] and was used in
this project to automate the installation of packages and dependencies. It was
used due to the familiarity with the developer as well as ease of creating. In
retrospect, a better tool to use would have been Ansible [61] or similar as this
would allow easy provisioning of installations across multiple devices.

6.1.3 Image manipulation

6.1.3.1 Pillow
Pillow is an image processing package built for python [62]. It was used through-

37

out this project to do just that, from resizing images to adding PNG metadata.
scikit-image [63] could have also been used for image manipulation. However, it
was not selected as it didn’t support PNG chunks metadata or Exif metadata.
Overall, Pillow caused no issues within the project and was a compelling pack-
age for the image processing tasks it was used for, helping to meet the project
objectives.

6.1.3.2 OpenCV
”OpenCV (Open Source Computer Vision Library) is an open-source computer
vision and machine learning software library” [27]. This library was used as it
came pre-installed on the Jetson nano image. It also offered an effective and
efficient way to run computer vision functions in Python and allowed the CSI
camera to be set up and run efficiently. OpenCV was an essential package in
this project. It reduced the complexity of the task by providing effective and
efficient algorithms for RGB to HSV conversion and background subtraction to
name a few.

6.1.3.3 Numpy
”NumPy is the fundamental package for scientific computing in Python” [64].
NumPy was mainly used in this project to store the images as arrays as the
NumPy array is a faster and more efficient method than using python default
lists[64].

6.1.3.4 Piexif
Piexif is a simple EXIF manipulator package for python [65]. It was used to
modify EXIF metadata. Pillow does allow for EXIF metadata manipulation.
However, the developer found this package easier to use as it was solely designed
to do EXIF manipulation, so the package was more intuitive than Pillow. The
package allowed for the objectives of metadata to be easily read and written to
be easily met.

6.1.4 Data Transfer

6.1.4.1 Boto3 and botocore
Boto3 and botocore are python packages provided and developed by Amazon
to communicate with the s3 instances [54]. They were used to implement the
data transfer from the Jetson Nano to the RFI’s data store. These packages
were used as amazon is the developer and maintainer of the S3 protocol [51] and
provided the correct functionality. Boto3 caused no problems in the project and
allowed for an effective solution to be implemented.

6.1.5 Graphical User Interface (GUI)

6.1.5.1 Tkinter
Originally PyGTK [66] was used to implement the GUI as RFI had experience
in it. However, there were issues with displaying the camera feed. So Tkinter

38

[55] was used instead as it is Python’s default GUI and is provided by default,
and the developer was able to implement a working GUI with minimal hassle.

6.1.6 Machine Learning

6.1.6.1 YOLO
Originally PyTorchYolo [67] was used to implement YOLOv3 [38]. As it used
PyTorch [68] which the developer had experience with, and it worked fine on
the virtual machine provided by RFI. However, this implementation of YOLO
had difficulty running on the Jetson Nano, taking a long time to process and
image, and it was complicated to install due to its dependencies not being built
for the ARM architecture. Therefore this implementation was changed to use
Darknet [69]. Darknet is an open source neural network that provides C++,
and Python APIs that provides an implement of the YOLOv3 algorithm. It
requires making the project from the source, which is negative; however, a Bash
script was implemented to automate this process. In retrospect, PyTorchYolo
should have been run and tested on the Jetson Nano first to gauge whether
it was suitable and would run efficiently. Fortunately Darknet was a suitable
alternative that ran effectively.

6.1.6.2 ScrabbleGan
ScrabbleGan is a handwriting synthesiser [35]. It was used to generate the
handwriting datasets, as it was well documented and easy to setup. ScrabbleGan
caused no problems and produced realistic data.

6.2 Project management

Project management is an integral part of any project, as effective or ineffective
management can ultimately decide the outcome of a project. The ALaBDaC
project was managed through various techniques; from meetings with supervi-
sors, version control, code management, and sprint planning, all of which are
discussed in detail in this section. The techniques also allowed for the profes-
sional standards of the University [11] and BCS [12] to be upheld.

6.2.1 Supervisor Meetings

6.2.1.1 Plymouth
An initial meeting was had with Dr David Walker, where the project scope was
proposed and accepted. From that point, there were meetings every other week
with fellow students, where we went round in a group and discussed; what had
been achieved, what was blocking and the next steps. These meetings were help-
ful as they provided a way to gauge progression against other people’s progress
who were doing similar projects; it also offered an opportunity to discuss prob-
lems and discussion over the best approaches and offer advice, based on the
developers previous and current experience.

39

6.2.1.2 RFI
At the beginning of the project, a weekly meeting was set up with Dr Mark
Basham (Science Director Artificial Intelligence) and Dr Laura Shemilt (Re-
search Software Engineer) from RFI, who were supervising the project from
their side. The initial meetings were to discuss the initial problem and potential
methods in which it could be tackled; with further meetings being a place to
give updates and discuss problems. They followed this format:

• What has been done

• What is planned for next week

• Any questions/ problems that have come up

• Discussion about the project

In addition to this agenda, demos of the project were given to make sure the
project was on track and meeting requirements. These meetings were invaluable
for helping keep the project on track and offered an opportunity to discuss ideas
and different approaches to the project.

As well as these meetings, a weekly meeting with the Artificial Intelligent
Theme group was attended. This was to help gain a further understanding of
the use of Artificial Intelligence within RFI and a chance to discuss the project
with the wider RFI team. These meetings were helpful as they gave insight into
different technologies and techniques applicable to the project.

6.2.2 Version Control

Version control is a method of tracking and managing changes to a software code
base [70]. To manage and maintain the project, the version control system Git
[70] was used. A repository was created on the rosalindfranklininstitute GitHub
account, with the name of alabdac. A feature branch and merge methodology
was followed, see figure 18 for example, such that a branch would be made for
a feature and developed on and then, once complete, merged to the master
branch.

40

Figure 18: Branch and merge version control diagram

This ensured that minimal merge conflicts occurred as each branch was work-
ing on a specific atomic feature. This method also allowed for detailed pull
requests that effectively outline the feature being added, allowing the developer
to have a detailed history of each feature implemented. As well as this, it allows
the developer to see changes and how changes were made throughout the code
base through the use of detailed commits that had a title and the description
of the changes made, see figure 19 for example, commit.

Figure 19: Example detailed commits and pull request on ALaBDaC repository

6.2.3 Code Management

As this project required writing and developing code, it is essential to manage
and develop correctly. To make sure that the code was appropriately com-

41

mented, Doc Strings [71] were used. Doc Strings is a string literal that occurs
after defining a module, class, method, and function. They outline what the
module, class, method or function does. Figure 20 shows an example Docstring.
This made the code and project more manageable and maintainable. Especially
when returning to old code to either add functionality or use the modules devel-
oped, allowing for an easy way to know what the code was meant to do without
having to delve into the code, thus saving time.

Figure 20: Example Doc String from ALaBDaC code base

To manage the codebase and ensure that there was a consistent and well
readable style throughout, the auto-formatting tool ’black’[72], was used. Auto
formatting enforces the best practices, reducing the time spent refactoring and
solving issues that could have been avoided if the code was formatted correctly.
The use of black throughout this project highlighted ’code smells’ [73] such as
too many parameters and excessively long lines of code early. This meant the
code smells could be appropriately managed before becoming an issue, thus
saving time from fixing potential problems further down the line and creating a
more maintainable codebase for future development.

6.2.4 Dependency Management

As the project is being developed over months and has a restricted deadline,
the latest packages were used when creating the software. The version was
locked to ensure that no issues would be incurred due to major package updates.
Dependencies are also kept to a minimum as this reduces the surface for supply
chain attacks [74].

6.2.5 Design Principles

Design Patterns and Principles are essential when developing software to ensure
it stays readable and well maintainable in the future, which is vital for this
project. Therefore the SOLID principles [75] were adhered to throughout the
project as demonstrated in the codebase.

42

6.2.6 Sprint Plans

The approach to this project was agile; therefore, different project requirements
were split into sprints. The weekly reports can be seen in Appendix C

6.2.6.1 Sprint Zero: Setup and kit ordering
The Aim: This sprint aimed to work out the exact requirements, define the
Minimal Viable Product (MVP) that would allow research to then take place,
order the hardware, and discuss the problem with RFI and Dr David Walker.

What was done: First, a meeting between the developer and RFI was set up to
discuss the project and define the scope, then the project was proposed to Dr
David Walker and accepted. A further meeting was arranged with RFI to spec-
ify the project’s requirements further and decide what the MVP of the project
would to allow for research and investigation to take place once implemented,
see Appendix D for requirements and if they where met and see Appendix E for
the MVP description. After this, the hardware was selected and bought, and a
project backlog was created using the office 365 planner.

Reflection on the sprint: The initial sprint went well; communication with RFI
was good, with a mutual understanding of what was expected from the project.
The requirements/objectives seemed achievable and exciting problems to solve.

6.2.6.2 Sprint One: Install Setup: GUI and Read RFID, MVP
The Aim: This sprint aimed to install the hardware, set up the GUI and RFID
reader to meet the minimal requirements to allow the research aspect of the
project to begin.

What was done: The kit arrived, and a mock lab was created with paper so
the system could be tested. All the parts were connected. The assumption that
the Raspberry Pi High-Quality Camera would work natively with Jetson Nano
was wrong, and thus a hardware modification was required to make it work.
After discussion with RFI, this was accepted, and the modification was done,
and the appropriate drivers were installed to run the camera. This process was
then documented for future installations. Then a simple GUI to display the
camera feed was implemented in PyGTK. However, this was a complicated pro-
cess, and it showed the camera with lag, so this was reimplemented in Tkinter,
which had no issues. Originally it was planned to get the RFID reader to read
the RFI RFID Cards and connect to their LDAP. However, we could not get
an RFI RFID Card made due to the developer not being an employee. So the
requirement was instead changed to read the RFID cards provided and check
them against a list of allowed RFID cards in a read-only allowed file as this was
not the project’s primary objective and would require internal work from RFI.
Then the program was set up to store a frame on the device every 10 seconds
to meet the minimum requirements effectively.

43

Reflection on the sprint: This sprint went well. It was frustrating that the
Raspberry Pi High-Quality Camera did not work straight away and required a
hardware modification. After searching the problem, there was a replacement
camera that had this modification already done. The agile ability to change the
requirements due to unexpected issues showed good project management and
good communication with RFI. The completion of the MVP has allowed for the
research and investigation part of the project to begin.

6.2.6.3 Sprint Two: Data Capture
The aim: This sprint aimed to investigate current methods and develop a way
to capture data intelligently.

What was done: Initially, the approach to this problem was to use object de-
tection techniques to recognise when a hand was on the page. However, it was
realised that this method would be challenging to implement as RFI could not
collect a dataset that could be used to train such an algorithm. After this real-
isation, unsupervised and classical computer vision methods were investigated
and tried, covering methods from canny edge detection [19] and hough trans-
forms [20] to colour segmentation [21] and background subtraction [76]. Once
the colour segmentation and background subtraction method was working, a
demo was given to RFI to validate the method and check they were happy with
the approach taken.

Reflection on the sprint: There were several challenges with this stage of the
project, as the developer had expected this part to be solved through modern
supervised machine learning techniques, so time had been spent researching
such techniques to find that a dataset couldn’t be collected or effectively cre-
ated. It made this problem a lot harder as the current literature covered super-
vised methods of object detection [39], [40], [38]. This required the developer
to change the approach and instead look into unsupervised and classical tech-
niques, which needed further literature review. This took a long time as these
methods were harder to implement/effectively tune and evaluate, as there was
no previous/objective data to test against. However, overall this sprint went
well and resulted in a suitable method with the time taken researching different
techniques being an efficient use of the developers time. It allowed for many
different techniques to be tried and tested to develop a solution that ultimately
worked.

6.2.6.4 Sprint Three: Data Extraction
The Aim: This sprint aimed to create a method to extract keywords from the
lab book.

What was done: It was initially assumed that there would be a package or
pre-existing system for handwriting detection, like there was for optical char-
acter recognition, with systems such as Tesseract [77], [78]. This not being the

44

case made the problem significantly harder as not being able to make or having
a dataset was an issue again, as these supervised object detection requires a la-
belled dataset. An investigation was done into handwriting datasets; however,
none contained keywords scientific terms, and due to the project’s objective,
this would not suit. At this point, synthetic datasets were looked into, and the
YOLO algorithm was trained on a synthetic dataset of numbers on a white back-
ground generated using the MNIST dataset [79] to recognise digits on a page.
This produced promising results and was able to identify some digits. This
gave the developer enough confidence to look for a handwriting synthesiser to
generate handwriting samples. To begin with, ScrabbleGan was trained on the
developers home machine for five epochs to see the results, which looked promis-
ing, after calculating that it would take approximately ten days if the machine
were left alone. This was not feasible due to other requirements. Therefore a
virtual machine with an NVIDIA V100 TENSOR CORE GPU was provided
from RFI for training, which reduced the training time down to 2.5 days. A
module was then made that would make a synthetic dataset, using the words
generated by ScrabbleGan and placing them on a white background in different
sizes. However, after training YOLO, it was clear that it struggled with words of
a similar length, and it would detect words within the lab book background and
not the writing itself. Then the program was updated to include backgrounds
and rotation of the words to help the algorithm detect the difference between
the words as the synthetic data better represented the real-world data.

Reflection on the sprint: The developer was pleased with how this sprint went,
as with the initial assumption being wrong, it turned what seemed to be an
easy task into a difficult one. With more time, more could have been done to
make the synthetic data look more realistic, i.e. adding greyness, words in sen-
tences. However, given the results, the developer was happy that this method
had shown promise. With the ending solution being an elegant and practical
way forward to the problem presented.

6.2.6.5 Sprint Four: Data exporter
The Aim: To transfer the image and relevant data (metadata) to the central
RFI data store.

What was done: Initially, the system was designed so that this objective would
be managed by the RFI-FILE monitor [80]. The RFI file monitor would have
meant the data could have been placed in a folder on the system, and the
data would have automatically transferred. However, during the project, it was
made clear that this would not be ready in time. Therefore several different
approaches were considered before Boto3 was used. This leads to an interface
class development, outlining the functions a data transfer class should have. So
that RFI could extend the functionality in the future easily. Once data could be
transferred, a discussion with RFI was had over what data was relevant to be
stored in the metadata. With this, a metadata formatter was implemented to

45

provide a way to keep the format consistent. Then, as this sprint was running
smoothly, the PNG chunks and EXIF metadata storage formats were imple-
mented.

Reflection on the sprint: This sprint had no significant issues and went very
well, mainly due to the developers’ previous experience interacting and access-
ing objects with s3 and using effective packages to help with implementing the
metadata part. This sprint ended with an effective solution being developed.

6.2.6.6 Sprint Five: All Together
The Aim: Bring everything together, remove redundant dependencies and write
everything up.

What was done: The final stage of the project was bringing the parts of the
project together. No new functionality was added; instead, quality of life im-
provements were made to make sure RFI could easily maintain it in the future,
and all relevant code was added to the repository that hadn’t previously. With
this, the dependency for PyTorchYolo was replaced with Darknet due to its
difficulty to install and run on the Jetson Nano, and the installation documen-
tation was written up. During this time, the developer gave a talk to the RFI
team and the Theme Advisory Panel (TAP) (a panel that aims to check that
the theme is on-topic) outlining what had been achieved during the project.
The report was then written up in neat.

Reflection on the sprint: This sprint went very well. The talk with the TAP
was very well received, with a lot of interest, in the implementation, and all
code was in the repository, worked and well documented. The report writing
was smooth, with no significant issues.

6.3 Methods

In this section the methods are evaluated, with potential areas to investigate or
implement in future.

6.3.1 Intelligent Data Capture

Although the tuning is difficult, this was an exemplary implementation, which
could have been improved by creating a set of tools to display what the different
setting would produce. Given more time and a larger budget, further techniques
could have been investigated to reduce the dependence on colour segmentation
and background detection. Some methods considered include using an infrared
camera to detect a hand entering the lab book as it can be assumed that the
hand will have a higher operating temperature than the lab book, a two-camera
setup to perform depth perception as the hand will be closer to the camera than
the lab book.

46

6.3.2 Intelligent Data Extraction

This implementation allows RFI to create a dataset of any words that can then
be used to train an object detection algorithm that works effectively meeting
the objective. Given more time, the developer would have investigated the per-
formance of different object detection algorithms as well as using ScrabbleGan
to generate a dataset of letters. To get the object detection algorithm to detect
the letters on the page and then use Natural Language Processing (NLP) tech-
niques such as word segmentation to stitch the letters together to workout the
keywords [81], to compare the effectiveness of word vs character recognition.

6.3.3 Data transfer

The data transfer implementation effectively met all of the requirements set out
for that section of the project. In the future it would be interesting to interact
with the RFI-File monitor for the data transfer, as this would give RFI more
control over how and when the data is transferred.

6.3.4 System

Overall the system implemented all of the initial objectives, apart from connec-
tivity with LDAP server, due to reasons mentioned in the sprint plans. The
future work for the system would be to add this connectivity to LDAP, so that
the allowed list of users is not stored on the machine itself.

6.4 Testing and validation

This project followed a test-driven development approach. This meant that the
tests were written before the functionality was implemented to ensure that the
implementation would meet the requirements.

The main type of testing undertaken in this project was unit testing. Unit
testing is a method of testing a small bit of code in isolation to check if it
functions correctly[82]. Mock unit testing was used to test the S3 exporter class
to check that it correctly interacted with an S3 data store by mocking an S3
instance. There was a total of 72 tests which covered 92% of the lines in the
codebase, a 100% of the tests passed.

Manual testing was also taken out on parts that either required user input,
i,e the RFID reader or required specific hardware, such as the camera or specific
parameters to be able to run. This consisted of visually checking that the camera
feed was displayed and checking that the RFID reader correctly read the input
and that intelligent data capture worked on a series of test videos, The set of
tests can be found in table 4

47

Test Expected Result
Running the GUI displays the camera feed Camera Feed is shown
Check RFID reader reads cards within the allowed list. Change in GUI display to ”Recording.”
Check RFID reader that the system doesn’t start when
using a card, not within the allowed list.

No change in GUI display

Check that the intelligent data extraction loads appro-
priately.

Appropriate detections with a test image.

Check that covering the border by the amount specified
leads to image capture.

Previous frames captured

Check that causing a frame difference to the amount
specified leads to image capture.

Previous frames captured

Check installation script works Everything that is needed is installed.
Closing GUI doesn’t instanly stop multiprocessing pro-
cess

Terminal will ouput ”Finished: Exited cleanly”

Pass arguments to the system Expected modifications to the system are made

Table 4: Manual Tests

Usability testing, in the common sense, was not feasible in this project due
to practical and legal reasons, e.g. lockdown restrictions due to coronavirus [24],
which meant that the developer could not set the project up within a lab-based
environment, and neither could RFI. The developer was also studying remotely,
so they could not ask fellow students or family members covered under the
ethics review form either. Fortunately, the aim of this project was to create
an automated way to collect lab book data whilst not disrupting the workflow
of the scientist as much as possible, so their only direct interaction with the
system is RFID reader, which is an accepted norm within RFI as most things
are activated or require an RFID card to use within the RFI Building. However,
the data exporter aspect of the project was evaluated internally by RFI. The
metadata format was evaluated by Dr Laura Shemilt and passed as being usable
and acceptable for being processed within RFI Scicat cataloguer [83]. As well as
this the S3 data exporter code was reviewed by Dr Laura Shemilt to check that
it did not expose any confidential information surrounding the internal workings
of RFI, which it passed, this is shown in figure 21.

48

Figure 21: Data exporter pull request code review.

The overall feedback of the project from RFI was very positive with them
being happy with the system implemented, see Appendix F for detailed feed-
back.

6.5 Overall

This project was managed well, with good and effective solutions being imple-
mented for the problems. The reasoning and practical selection of the technolo-
gies and methods used allowed for the project to run smoothly. Overall, the
practical project management of this project allowed it to succeed.

49

7 Conclusion

This project was in collaboration with the RFI. The key objective was to in-
vestigate and develop an automated way to collect lab book information as the
user writes into the lab book and record it to a central data store. To solve
the inherent issues of using paper lab books, including; accessing, reviewing,
searching, and being hard to practically backup.

The system presented in the body of this report effectively met that objective
and solved the problem. It solved the problem using classical computer vision
methods to capture data, machine learning to extract the data, and effective
software development to export data and run the system. That, in turn, created
a usable proof of concept piece that RFI are delighted with and plan to use in
production within their labs.

In the future, the area that needs further investigation and improvement is
the synthetic dataset generation. It has shown potential as described by the
main body of this report but could be improved if made to look more realistic
through further image processing.

Overall, the developer is very pleased with this project’s outcome. Given
its inherent difficulties, no datasets, no preexisting solutions and hardware lim-
itations, all of which increased the complexity of the problem. However, these
issues lead to creating a novel and attractive solution that worked around them,
ultimately solving the problem presented.

50

References

[1] The good laboratory practice regulations 1999, 1999. [Online]. Available:
https://www.legislation.gov.uk/uksi/1999/3106/contents (visited
on 04/02/2021).

[2] Freedom of information act 2000, 2000. [Online]. Available: https://

www . legislation . gov . uk / ukpga / 2000 / 36 / contents (visited on
04/02/2021).

[3] Data protection act 2018, 2018. [Online]. Available: https://www.legislation.
gov.uk/ukpga/2018/12/contents (visited on 04/02/2021).

[4] J. Prewett, Laboratory notebooks, 2018. [Online]. Available: https://

warwick.ac.uk/services/ris/research_integrity/code_of_practice_

and_policies/research_code_of_practice/datacollection_retention/

laboratory_notebooks/ (visited on 04/02/2021).

[5] R. F. Institute, 2020. [Online]. Available: https://www.rfi.ac.uk/

about/ (visited on 10/27/2020).

[6] labforward gmbh, labfolder. 2021. [Online]. Available: https : / / www .

labfolder.com/ (visited on 04/02/2021).

[7] B. Inc, Electronic lab notebook-eln-labguru, 2021. [Online]. Available: https:
//www.labguru.com/ (visited on 04/02/2021).

[8] E. Regulations, General data protection regulation (gdpr), 2018. [Online].
Available: https://gdpr-info.eu/ (visited on 04/02/2021).

[9] Open research, 2021. [Online]. Available: https://www.ukri.org/about-
us/policies-standards-and-data/good-research-resource-hub/

open-research/ (visited on 04/20/2021).

[10] Computer misuse act 1990, 2007. [Online]. Available: https : / / www .

legislation.gov.uk/ukpga/1990/18/contents (visited on 04/24/2021).

[11] L. Beahan, Student code of conduct and disciplinary procedure, version 3.1,
2020. [Online]. Available: https://www.plymouth.ac.uk/uploads/

production/document/path/17/17958/Code_of_conduct_Aug_2020.

pdf (visited on 04/05/2021).

[12] B. The Chartered Institute for IT, Bcs code of conduct, 2021. [Online].
Available: https://www.bcs.org/membership/become-a-member/bcs-
code-of-conduct/ (visited on 04/05/2021).

[13] N. LTD, Jetson nano developer kit. [Online]. Available: https://developer.
nvidia.com/embedded/jetson-nano-developer-kit.

[14] R. P. Foundation, Raspberry pi 4 computer model b 2021, 2021. [Online].
Available: https://datasheets.raspberrypi.org/rpi4/raspberry-
pi-4-product-brief.pdf (visited on 04/02/2021).

[15] ——, Raspberry pi high quality camera, 2020. [Online]. Available: https:
//static.raspberrypi.org/files/product-briefs/Raspberry_Pi_

HQ_Camera_Product_Brief.pdf (visited on 04/02/2021).

51

https://www.legislation.gov.uk/uksi/1999/3106/contents
https://www.legislation.gov.uk/ukpga/2000/36/contents
https://www.legislation.gov.uk/ukpga/2000/36/contents
https://www.legislation.gov.uk/ukpga/2018/12/contents
https://www.legislation.gov.uk/ukpga/2018/12/contents
https://warwick.ac.uk/services/ris/research_integrity/code_of_practice_and_policies/research_code_of_practice/datacollection_retention/laboratory_notebooks/
https://warwick.ac.uk/services/ris/research_integrity/code_of_practice_and_policies/research_code_of_practice/datacollection_retention/laboratory_notebooks/
https://warwick.ac.uk/services/ris/research_integrity/code_of_practice_and_policies/research_code_of_practice/datacollection_retention/laboratory_notebooks/
https://warwick.ac.uk/services/ris/research_integrity/code_of_practice_and_policies/research_code_of_practice/datacollection_retention/laboratory_notebooks/
https://www.rfi.ac.uk/about/
https://www.rfi.ac.uk/about/
https://www.labfolder.com/
https://www.labfolder.com/
https://www.labguru.com/
https://www.labguru.com/
https://gdpr-info.eu/
https://www.ukri.org/about-us/policies-standards-and-data/good-research-resource-hub/open-research/
https://www.ukri.org/about-us/policies-standards-and-data/good-research-resource-hub/open-research/
https://www.ukri.org/about-us/policies-standards-and-data/good-research-resource-hub/open-research/
https://www.legislation.gov.uk/ukpga/1990/18/contents
https://www.legislation.gov.uk/ukpga/1990/18/contents
https://www.plymouth.ac.uk/uploads/production/document/path/17/17958/Code_of_conduct_Aug_2020.pdf
https://www.plymouth.ac.uk/uploads/production/document/path/17/17958/Code_of_conduct_Aug_2020.pdf
https://www.plymouth.ac.uk/uploads/production/document/path/17/17958/Code_of_conduct_Aug_2020.pdf
https://www.bcs.org/membership/become-a-member/bcs-code-of-conduct/
https://www.bcs.org/membership/become-a-member/bcs-code-of-conduct/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://datasheets.raspberrypi.org/rpi4/raspberry-pi-4-product-brief.pdf
https://datasheets.raspberrypi.org/rpi4/raspberry-pi-4-product-brief.pdf
https://static.raspberrypi.org/files/product-briefs/Raspberry_Pi_HQ_Camera_Product_Brief.pdf
https://static.raspberrypi.org/files/product-briefs/Raspberry_Pi_HQ_Camera_Product_Brief.pdf
https://static.raspberrypi.org/files/product-briefs/Raspberry_Pi_HQ_Camera_Product_Brief.pdf

[16] ——, Camera module v2, 2016. [Online]. Available: https://www.raspberrypi.
org/products/camera-module-v2/ (visited on 10/16/2020).

[17] R. Szeliski, Computer vision: algorithms and applications. Springer Sci-
ence & Business Media, 2010.

[18] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep
learning for computer vision: A brief review,” Computational intelligence
and neuroscience, vol. 2018, 2018.

[19] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on pattern analysis and machine intelligence, no. 6, pp. 679–698,
1986.

[20] P. Mukhopadhyay and B. B. Chaudhuri, “A survey of hough transform,”
Pattern Recognition, vol. 48, no. 3, pp. 993–1010, 2015, issn: 0031-3203.
doi: https://doi.org/10.1016/j.patcog.2014.08.027. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0031320314003446.

[21] L. Shuhua and G. Gaizhi, “The application of improved hsv color space
model in image processing,” in 2010 2nd International Conference on Fu-
ture Computer and Communication, vol. 2, 2010, pp. V2–10–V2–13. doi:
10.1109/ICFCC.2010.5497299.

[22] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[23] Y. Xiong, Fast and accurate document detection for scanning, 2016. [On-
line]. Available: https://dropbox.tech/machine-learning/fast-and-
accurate-document-detection-for-scanning (visited on 11/20/2020).

[24] Coronavirus (covid-19): Guidance and support 2021, 2021. [Online]. Avail-
able: https://www.gov.uk/coronavirus (visited on 03/15/2021).

[25] A. Mittal, A. Zisserman, and P. H. Torr, “Hand detection using multiple
proposals.,” in Bmvc, vol. 2, 2011, p. 5.

[26] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D.
Mané, Concrete problems in ai safety, 2016. arXiv: 1606.06565 [cs.AI].

[27] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

[28] J. Balsam, H. A. Bruck, Y. Kostov, and A. Rasooly, “Image stacking ap-
proach to increase sensitivity of fluorescence detection using a low cost
complementary metal-oxide-semiconductor (cmos) webcam,” Sensors and
Actuators B: Chemical, vol. 171-172, pp. 141–147, 2012, issn: 0925-4005.
doi: https : / / doi . org / 10 . 1016 / j . snb . 2012 . 02 . 003. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0925400512001177.

[29] Why is handwriting recognition so difficult for ai? [Online]. Available:
https://www.thinkautomation.com/bots-and-ai/why-is-handwriting-

recognition-so-difficult-for-ai/.

52

https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/camera-module-v2/
https://doi.org/https://doi.org/10.1016/j.patcog.2014.08.027
https://www.sciencedirect.com/science/article/pii/S0031320314003446
https://www.sciencedirect.com/science/article/pii/S0031320314003446
https://doi.org/10.1109/ICFCC.2010.5497299
https://dropbox.tech/machine-learning/fast-and-accurate-document-detection-for-scanning
https://dropbox.tech/machine-learning/fast-and-accurate-document-detection-for-scanning
https://www.gov.uk/coronavirus
https://arxiv.org/abs/1606.06565
https://doi.org/https://doi.org/10.1016/j.snb.2012.02.003
https://www.sciencedirect.com/science/article/pii/S0925400512001177
https://www.sciencedirect.com/science/article/pii/S0925400512001177
https://www.thinkautomation.com/bots-and-ai/why-is-handwriting-recognition-so-difficult-for-ai/
https://www.thinkautomation.com/bots-and-ai/why-is-handwriting-recognition-so-difficult-for-ai/

[30] W. Kacalak, K. D. Stuart, and M. Majewski, “Selected problems of in-
telligent handwriting recognition,” in Analysis and Design of Intelligent
Systems using Soft Computing Techniques, P. Melin, O. Castillo, E. G.
Ramı́rez, J. Kacprzyk, and W. Pedrycz, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 298–305, isbn: 978-3-540-72432-2. doi: 10.
1007/978-3-540-72432-2_30. [Online]. Available: https://doi.org/
10.1007/978-3-540-72432-2_30.

[31] S Preetha, I. Afrid, P Karthik Hebbar, and S. Nishchay, “Machine learning
for handwriting recognition,” International Journal of Computer (IJC),
vol. 38, no. 1, pp. 93–101, 2020.

[32] G. Albuquerque, T. Lowe, and M. Magnor, “Synthetic generation of high-
dimensional datasets,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, no. 12, pp. 2317–2324, 2011. doi: 10.1109/TVCG.2011.
237.

[33] S. Gaur, S. Sonkar, and P. P. Roy, “Generation of synthetic training data
for handwritten indic script recognition,” in 2015 13th International Con-
ference on Document Analysis and Recognition (ICDAR), 2015, pp. 491–
495. doi: 10.1109/ICDAR.2015.7333810.

[34] P. P. Roy, A. Mohta, and B. B. Chaudhuri, Synthetic data generation for
indic handwritten text recognition, 2018. arXiv: 1804.06254 [cs.CV].

[35] S. Fogel, H. Averbuch-Elor, S. Cohen, S. Mazor, and R. Litman, “Scrabble-
gan: Semi-supervised varying length handwritten text generation,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

[36] U.-V. Marti and H. Bunke, “The iam-database: An english sentence database
for offline handwriting recognition,” International Journal on Document
Analysis and Recognition, vol. 5, no. 1, pp. 39–46, 2002.

[37] D. INC, List of english words, https://github.com/dwyl/english-
words, 2020.

[38] J. Redmon and A. Farhadi, Yolov3: An incremental improvement, 2018.
arXiv: 1804.02767 [cs.CV].

[39] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” arXiv preprint arXiv:1506.01497,
2015.

[40] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision, Springer, 2016, pp. 21–37.

[41] R. H. Wiggins, H. C. Davidson, H. R. Harnsberger, J. R. Lauman, and
P. A. Goede, “Image file formats: Past, present, and future,” Radiograph-
ics, vol. 21, no. 3, pp. 789–798, 2001.

[42] A. D. Association et al., Tiff revision 6.0, 1992. [Online]. Available: https:
//www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFF6.

pdf (visited on 03/15/2021).

53

https://doi.org/10.1007/978-3-540-72432-2_30
https://doi.org/10.1007/978-3-540-72432-2_30
https://doi.org/10.1007/978-3-540-72432-2_30
https://doi.org/10.1007/978-3-540-72432-2_30
https://doi.org/10.1109/TVCG.2011.237
https://doi.org/10.1109/TVCG.2011.237
https://doi.org/10.1109/ICDAR.2015.7333810
https://arxiv.org/abs/1804.06254
https://github.com/dwyl/english-words
https://github.com/dwyl/english-words
https://arxiv.org/abs/1804.02767
https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFF6.pdf
https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFF6.pdf
https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFF6.pdf

[43] M. Adler, T. Boutell, J. Bowler, C. Brunschen, A. M. Costello, L. D.
Crocker, A. Dilger, O. Fromme, J.-l. Gailly, C. Herborth, A. Jakulin, N.
Kettler, T. Lane, A. Lehmann, C. Lilley, D. Martindale, O. Mortensen, K.
S. Pickens, R. P. Poole, G. Randers-Pehrson, G. Roelofs, W. v. Schaik, G.
Schalnat, P. Schmidt, M. Stokes, T. Wegner, and J. Wohl, Portable net-
work graphics (png) specification (second edition), 2003. [Online]. Avail-
able: https://www.w3.org/TR/2003/REC-PNG-20031110/ (visited on
03/15/2021).

[44] G. Developers, “A new image format for the web,” Internet publication:
https://developers.google.com/speed/webp, 2020. (visited on 03/15/2021).

[45] G. K. Wallace, “The jpeg still picture compression standard,” IEEE trans-
actions on consumer electronics, vol. 38, no. 1, pp. xviii–xxxiv, 1992.

[46] Image file type and format guide 2021, 2021. [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_

types (visited on 03/15/2021).

[47] J. Tesic, “Metadata practices for consumer photos,” IEEE MultiMedia,
vol. 12, no. 3, pp. 86–92, 2005. doi: 10.1109/MMUL.2005.50.

[48] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Proceed-
ings of the 7th Symposium on Operating Systems Design and Implemen-
tation, ser. OSDI ’06, Seattle, Washington: USENIX Association, 2006,
307–320, isbn: 1931971471.

[49] Ceph object gateway s3 api — ceph documentation, 2021. [Online]. Avail-
able: https://docs.ceph.com/en/latest/radosgw/s3/ (visited on
03/02/2021).

[50] Minio — learn how to deploy minio with amazon s3, 2021. [Online]. Avail-
able: https://docs.min.io/docs/minio- gateway- for- s3.html

(visited on 03/02/2021).

[51] Amazon simple storage service, 2006. [Online]. Available: https://docs.
aws . amazon . com / AmazonS3 / latest / API / s3 - api . pdf (visited on
03/22/2021).

[52] R. Rizun, D. Moore, A. Petrescu, B. LeMasurier, T. Nakatani, and A.
Gaul, S3fs-fuse, 2019. [Online]. Available: https://github.com/s3fs-
fuse/s3fs-fuse (visited on 03/02/2021).

[53] N. Craig-Wood, Rclone, 2021. [Online]. Available: https://rclone.org/
(visited on 11/01/2020).

[54] Boto3 documentation, 2021. [Online]. Available: https://boto3.amazonaws.
com/v1/documentation/api/latest/index.html (visited on 03/02/2021).

[55] G. Van Rossum, The Python Library Reference, release 3.8.2. Python
Software Foundation, 2020.

54

https://www.w3.org/TR/2003/REC-PNG-20031110/
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types
https://doi.org/10.1109/MMUL.2005.50
https://docs.ceph.com/en/latest/radosgw/s3/
https://docs.min.io/docs/minio-gateway-for-s3.html
https://docs.aws.amazon.com/AmazonS3/latest/API/s3-api.pdf
https://docs.aws.amazon.com/AmazonS3/latest/API/s3-api.pdf
https://github.com/s3fs-fuse/s3fs-fuse
https://github.com/s3fs-fuse/s3fs-fuse
https://rclone.org/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

[56] Arducam, Imx477 hq camera module datasheet2021, 2021. [Online]. Avail-
able: https://www.uctronics.com/download/Amazon/B0249_IMX477_
HQ_Camera_for_Jetson_Datasheet.pdf (visited on 05/02/2021).

[57] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009, isbn: 1441412697.

[58] Python package index - pypi. [Online]. Available: https://pypi.org/
(visited on 03/28/2021).

[59] B. W. Kernighan and D. M. Ritchie, The C Programming Language, 2nd.
Prentice Hall Professional Technical Reference, 1988, isbn: 0131103709.

[60] P GNU, Free software foundation. bash (3.2. 48)[unix shell program], 2007.

[61] Ansible, Ansible documentation, 2021. [Online]. Available: https://docs.
ansible.com/ansible/latest/user_guide/index.html (visited on
12/02/2020).

[62] H. van Kemenade, wiredfool, A. Murray, A. Clark, A. Karpinsky, O. Bara-
novič, C. Gohlke, J. Dufresne, B. Crowell, D. Schmidt, K. Kopachev, A.
Houghton, S. Mani, S. Landey, vashek, J. Ware, J. Douglas, D. Caro,
U. Martinez, S. Kossouho, R. Lahd, S. T., A. Lee, E. W. Brown, O.
Tonnhofer, M. Bonfill, P. R. (), F. Al-Saidi, G. Novikov, and M. Górny,
Python-pillow/pillow: 8.2.0, version 8.2.0, Apr. 2021. doi: 10.5281/zenodo.
4659051. [Online]. Available: https : / / doi . org / 10 . 5281 / zenodo .

4659051.

[63] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D.
Warner, N. Yager, E. Gouillart, T. Yu, and the scikit-image contributors,
“Scikit-image: Image processing in Python,” PeerJ, vol. 2, e453, Jun. 2014,
issn: 2167-8359. doi: 10.7717/peerj.453. [Online]. Available: https:
//doi.org/10.7717/peerj.453.

[64] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T.
Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array
programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep.
2020. doi: 10.1038/s41586-020-2649-2. [Online]. Available: https:
//doi.org/10.1038/s41586-020-2649-2.

[65] hMatoba, Piexif, version 1.1.3, 2019. [Online]. Available: https://piexif.
readthedocs.io/.

[66] PyGObject, Pygobject documentation, 2021. [Online]. Available: https:
//pygobject.readthedocs.io/en/latest/ (visited on 04/02/2021).

[67] L.-N. Erik and F. Vahl, Eriklindernoren/pytorch-yolov3, 2021. [Online].
Available: https://github.com/eriklindernoren/PyTorch- YOLOv3

(visited on 04/10/2021).

55

https://www.uctronics.com/download/Amazon/B0249_IMX477_HQ_Camera_for_Jetson_Datasheet.pdf
https://www.uctronics.com/download/Amazon/B0249_IMX477_HQ_Camera_for_Jetson_Datasheet.pdf
https://pypi.org/
https://docs.ansible.com/ansible/latest/user_guide/index.html
https://docs.ansible.com/ansible/latest/user_guide/index.html
https://doi.org/10.5281/zenodo.4659051
https://doi.org/10.5281/zenodo.4659051
https://doi.org/10.5281/zenodo.4659051
https://doi.org/10.5281/zenodo.4659051
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://piexif.readthedocs.io/
https://piexif.readthedocs.io/
https://pygobject.readthedocs.io/en/latest/
https://pygobject.readthedocs.io/en/latest/
https://github.com/eriklindernoren/PyTorch-YOLOv3

[68] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing Sys-
tems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 8024–8035.
[Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.

pdf.

[69] J. Redmon, Darknet: Open source neural networks in c, http://pjreddie.
com/darknet/, 2013–2016.

[70] S. Chacon and B. Straub, Pro git. Springer Nature, 2014.

[71] D. Goodger and G. van Rossum, Pep 257 – docstring conventions, 2001.
[Online]. Available: https://www.python.org/dev/peps/pep-0257/
(visited on 05/18/2021).

[72] Langa, C. Willing, C. Meyer, J. Zijlstra, M. Naylor, Z. Dollenstein, C.
Lees, R. Si, A.-R. Janhangeer, A. Johnson, A. Williamson, A. Huynh,
A. Vandiver, A. Simon, A.-P. Ljungquist, A. Thorp, A. Zhou, Andrey, A.
Freeland, A. Sottile, A. Buijk, A. Borbornah, A. Malyshev, A. H. Drewsen,
A. Fackler, A. KC, B. Taşkaya, B. Wohlwend, B. Woodruff, B. Raghu-
nathan, B. Bucher, B. Cannon, B. Bugyi, B. Forbes, C. Lind, Charles, C.
Reid, C. Clauss, C. Heimes, C. Wooters, C. Rose, C. Oxley, Cong, C. R.
Lees, D. Davison, D. Hahler, D. M. Capella, D. Esposti, D. Hotham, D.
Lukes, D. Szotten, D. Laxalde, D. Thor, dylanjblack, E. Treuherz, E.
Hessman, F. Kohlgrüber, F. Thiery, Francisco, G. Tagliabue, G. Ganden-
berger, G. P. Smith, G. Camargo, hauntsaninja, H. Alqattan, Heaford,
H. Barrera, H. v. Kemenade, H. Schlawack, I. Katanić, J. Kadlubiec, J.
Warczarek, J. Hnátek, J. Fried, J. Friedland, jgirardet, J. Brännlund, J.
Jia, J. Antonakakis, J. Dufresne, J. Obrist, J. Wareing, J. Nazario, J.
Larson, J. Bode, J. Holland, J. Cannon, J. Padilla, J. L. C. Rodŕıguez,
kaiix, K. McLaughlin, K. Leinweber, K. Smiley, K. Ralph, K. Kirsche,
K. Hausmann, K. Sunden, L. Chan, L. Groh, L. Carvalho, L. Sterbic,
LukasDrude, M. Hossam, Mariatta, M. VanEseltine, M. Clapp, M. Wal-
ster, M. Smolens, M. Aquilina, M. Flaxman, M. J. Sullivan, M. McClimon,
M. Gaiowski, Mike, mikehoyio, M. h. Kim, M. Shubernetskiy, MomIsBest-
Friend, N. Goldbaum, N. Hunt, Neraste, N. Waxweiler, O. Lev, O. Daniel,
otstrel, P. Galindo, P. Ganssle, P. Meinhardt, P. Bengtsson, P. Grayson, P.
Stensmyr, pmacosta, Q. Pradet, R. Schmitt, R. Valles, R. Fearn, R. Jha,
R. Bedford, R. Davis, R. Verschelde, S. Salonen, S. Cormier-Iijima, S. Das-
gupta, Sergi, S. Stevenson, Shantanu, shaoran, S. Fujino, springstan, S.
Korokithakis, S. Rosen, S. M. Vascellaro, S. Kapil, S. Eustace, T. Amuyal,
Terrance, T. Lu, T. Grainger, T. Gates, T. Swast, Timo, T. Fleming, T.
Christie, T. Narlock, T. Hombashi, T. Chandra, T.-p. Chung, U. Shah,
utsav dbx, vezeli, V. Skyttä, V. B. Sharma, V. Emelianov, williamfzc,

56

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://www.python.org/dev/peps/pep-0257/

w. bolsterlee, Yazdan, Y. Høiseth, Y. Karabas, and Z. Hatfield-Dodds,
Black the uncompromising python code formatter, 2021. [Online]. Avail-
able: https://github.com/psf/black (visited on 05/02/2021).

[73] A. Yamashita and L. Moonen, “Do developers care about code smells? an
exploratory survey,” in 2013 20th Working Conference on Reverse Engi-
neering (WCRE), 2013, pp. 242–251. doi: 10.1109/WCRE.2013.6671299.

[74] Supply chain security guidance, 2018. [Online]. Available: https://www.
ncsc.gov.uk/collection/supply-chain-security (visited on 04/18/2021).

[75] T. Gilb and S. Finzi, Principles of software engineering management.
Addison-wesley Reading, MA, 1988, vol. 11.

[76] M. Piccardi, “Background subtraction techniques: A review,” in 2004
IEEE International Conference on Systems, Man and Cybernetics (IEEE
Cat. No.04CH37583), vol. 4, 2004, 3099–3104 vol.4. doi: 10.1109/ICSMC.
2004.1400815.

[77] R. Smith, “An overview of the tesseract ocr engine,” in Ninth international
conference on document analysis and recognition (ICDAR 2007), IEEE,
vol. 2, 2007, pp. 629–633.

[78] R. Smith, A. Abdulkader, R. Antonova, N. Beato, J. Breidenbach, S.
Charron, P. Cheatle, S. Crouch, D. Eger, S. Huddleston, D. Johnson, R.
Katikam, T. Kielbus, D.-S. Lee, R. Liu Zongyi (Joe)and Moss, C. Newton,
M. Reimer, M. Renn, R. Romano, C. Russon, S. Saxena, M. Seaman, F.
Shafait, H. Takenaka, R. Unnikrishnan, J. Wanke, P. P. Xiu, A. Ziem, O.
Zuniga, Z. Podobný, J. Regan, J. R. Barlow, S. Brechtken, T. Breuel, A.
Dovev, M. Ettl, S. D. Kumar, N. Metzger, T. Morris, T. Müller, E. Pugin,
R. Sachunsky, R. Schietekat, S. M. Vaidya, R. Watts, S. Weil, N. White,
and A. Zaitsev, Tesseract-ocr/tesseract, 2019. [Online]. Available: https:
//github.com/tesseract-ocr/tesseract (visited on 01/05/2021).

[79] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, 2012. doi: 10.1109/MSP.2012.2211477.

[80] T. Schoonjans and L. Shemilt, Rfi-file-monitor, 2021. [Online]. Avail-
able: https://rosalindfranklininstitute.github.io/rfi- file-

monitor/ (visited on 04/15/2021).

[81] J. R. Van Aken, “A statistical learning algorithm for word segmentation,”
arXiv preprint arXiv:1105.6162, 2011.

[82] B. Okken, Python testing with Pytest: simple, rapid, effective, and scalable.
Pragmatic Bookshelf, 2017.

[83] Scicat project, 2021. [Online]. Available: https://scicatproject.github.
io/ (visited on 11/04/2020).

57

https://github.com/psf/black
https://doi.org/10.1109/WCRE.2013.6671299
https://www.ncsc.gov.uk/collection/supply-chain-security
https://www.ncsc.gov.uk/collection/supply-chain-security
https://doi.org/10.1109/ICSMC.2004.1400815
https://doi.org/10.1109/ICSMC.2004.1400815
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://doi.org/10.1109/MSP.2012.2211477
https://rosalindfranklininstitute.github.io/rfi-file-monitor/
https://rosalindfranklininstitute.github.io/rfi-file-monitor/
https://scicatproject.github.io/
https://scicatproject.github.io/

Appendix

58

A Parts

Item Price Where
Jetson Nano £99 https://www.okdo.com/p/

nvidia-jetson-nano-development-kit/

Power Supply £12.99 https://www.

amazon.co.uk/

4000mA-Switching-Adaptor-Supply-5-5mmx2-1mm/

dp/B07Y8MS5HM

Raspberry Pi High Quality
Camera Lens 6mm Wide An-
gle

£25 https://thepihut.

com/products/

raspberry-pi-high-quality-camera-lens

Raspberry Pi High Quality
Camera Module

£49.50 https://thepihut.

com/products/

raspberry-pi-high-quality-camera-module

SD card 128GB £27.96 https://www.

amazon.co.uk/

Samsung-MB-ME32GA-EU-Select-Adaptor/

dp/B085FGMQS6/

RFID card reader £11.99 https://www.

amazon.co.uk/

KKmoon-Proximity-Sensor-Reader-Interface/

dp/B018TXQWRE/

5inch HDMI LCD (H) £35.26 https://www.waveshare.

com/5inch-hdmi-lcd-h.htm

Jumper Wires £3.50 https://thepihut.

com/products/

rpi-premium-jumper-wires-40pk-male-female-100mm

Wifi Dongle £11 https://thepihut.

com/products/

mini-usb-wifi-module-rtl8188eu-802-11b-g-n

Jumper Shunt £1 https://thepihut.

com/products/

jumper-shunt-with-handle-0-1-2-54mm-10-pack

Total £277.20

Table 5: Detailed Parts List

59

https://www.okdo.com/p/nvidia-jetson-nano-development-kit/
https://www.okdo.com/p/nvidia-jetson-nano-development-kit/
https://www.amazon.co.uk/4000mA-Switching-Adaptor-Supply-5-5mmx2-1mm/dp/B07Y8MS5HM
https://www.amazon.co.uk/4000mA-Switching-Adaptor-Supply-5-5mmx2-1mm/dp/B07Y8MS5HM
https://www.amazon.co.uk/4000mA-Switching-Adaptor-Supply-5-5mmx2-1mm/dp/B07Y8MS5HM
https://www.amazon.co.uk/4000mA-Switching-Adaptor-Supply-5-5mmx2-1mm/dp/B07Y8MS5HM
https://thepihut.com/products/raspberry-pi-high-quality-camera-lens
https://thepihut.com/products/raspberry-pi-high-quality-camera-lens
https://thepihut.com/products/raspberry-pi-high-quality-camera-lens
https://thepihut.com/products/raspberry-pi-high-quality-camera-module
https://thepihut.com/products/raspberry-pi-high-quality-camera-module
https://thepihut.com/products/raspberry-pi-high-quality-camera-module
https://www.amazon.co.uk/Samsung-MB-ME32GA-EU-Select-Adaptor/dp/B085FGMQS6/
https://www.amazon.co.uk/Samsung-MB-ME32GA-EU-Select-Adaptor/dp/B085FGMQS6/
https://www.amazon.co.uk/Samsung-MB-ME32GA-EU-Select-Adaptor/dp/B085FGMQS6/
https://www.amazon.co.uk/Samsung-MB-ME32GA-EU-Select-Adaptor/dp/B085FGMQS6/
https://www.amazon.co.uk/KKmoon-Proximity-Sensor-Reader-Interface/dp/B018TXQWRE/
https://www.amazon.co.uk/KKmoon-Proximity-Sensor-Reader-Interface/dp/B018TXQWRE/
https://www.amazon.co.uk/KKmoon-Proximity-Sensor-Reader-Interface/dp/B018TXQWRE/
https://www.amazon.co.uk/KKmoon-Proximity-Sensor-Reader-Interface/dp/B018TXQWRE/
https://www.waveshare.com/5inch-hdmi-lcd-h.htm
https://www.waveshare.com/5inch-hdmi-lcd-h.htm
https://thepihut.com/products/rpi-premium-jumper-wires-40pk-male-female-100mm
https://thepihut.com/products/rpi-premium-jumper-wires-40pk-male-female-100mm
https://thepihut.com/products/rpi-premium-jumper-wires-40pk-male-female-100mm
https://thepihut.com/products/mini-usb-wifi-module-rtl8188eu-802-11b-g-n
https://thepihut.com/products/mini-usb-wifi-module-rtl8188eu-802-11b-g-n
https://thepihut.com/products/mini-usb-wifi-module-rtl8188eu-802-11b-g-n
https://thepihut.com/products/jumper-shunt-with-handle-0-1-2-54mm-10-pack
https://thepihut.com/products/jumper-shunt-with-handle-0-1-2-54mm-10-pack
https://thepihut.com/products/jumper-shunt-with-handle-0-1-2-54mm-10-pack

B Intelligent Data Capture captures

(a) Capture one (b) Capture two

(c) Capture three (d) Capture four

Figure 22: Video one captures with border threshold of 5% and frame change
threshold of 2500

60

(a) Capture one (b) Capture two

(c) Capture three (d) Capture four

Figure 23: Video two captures with border threshold of 5% and frame change
threshold of 2500

61

(a) Capture one (b) Capture two

(c) Capture three (d) Capture four

Figure 24: Video three captures with border threshold of 5% and frame change
threshold of 2500

62

(a) Capture one (b) Capture two

(c) Capture three (d) Capture four

Figure 25: Video four captures with border threshold of 5% and frame change
threshold of 2500

63

(a) Capture one (b) Capture two

(c) Capture three (d) Capture four

Figure 26: Video five captures with border threshold of 5% and frame change
threshold of 2500

64

C Sprints - Weekly reporting

Sprint 0

Sprint 1

65

Sprint 2

Sprint 3

66

Sprint 4

Sprint 5

67

Sprint 6-1

Sprint 6-2

68

Sprint 7

Sprint 8

69

Sprint 9

Sprint 10

70

Sprint 11

Sprint 12

71

Sprint 13

Sprint 14

72

Sprint 15

Sprint 16

73

Sprint 17

Sprint 18

74

Sprint 19

Sprint 20

75

D Requirements

Figure 27: Project Requirements list

76

E Minimal viable product description

Figure 28: Minimal Viable Product (MVP) outline, to allow for research and
investigation of techniques to improve the system to begin.

77

F Review from the Rosalind Franklin Institute

Figure 29: Feedback from Dr Laura Shemilt - Research Software Engineer at
RFI

78

Figure 30: Feedback from Dr Mark Basham - Science Director Artificial Intel-
ligence at RFI

79

	Introduction
	Background, Objectives and Aims
	Background
	Aims
	Objectives

	Legal, Social, Ethical and Professional issues
	Legal and Professional
	Social and Ethical

	Hardware
	Components

	Methods and Discussion
	Intelligent Data Capture
	What the problem is and objectives
	Literature Review
	Implementation
	Results

	Intelligent Data extraction
	What the problem is and objectives
	Literature Review
	Text Recognition
	Synthetic Dataset Generation

	Implementation
	Results

	Data transfer
	What the problem is and objectives
	Literature Review
	Image formats
	Storing relevant data
	Exporting data

	Implementation
	Results

	The System
	RFID Reader
	GUI
	Overall Design

	Project Post-Mortem
	Technologies
	Hardware
	Programming Language
	Python
	Bash

	Image manipulation
	Pillow
	OpenCV
	Numpy
	Piexif

	Data Transfer
	Boto3 and botocore

	Graphical User Interface (GUI)
	Tkinter

	Machine Learning
	YOLO
	ScrabbleGan

	Project management
	Supervisor Meetings
	Plymouth
	RFI

	Version Control
	Code Management
	Dependency Management
	Design Principles
	Sprint Plans
	Sprint Zero: Setup and kit ordering
	Sprint One: Install Setup: GUI and Read RFID, MVP
	Sprint Two: Data Capture
	Sprint Three: Data Extraction
	Sprint Four: Data exporter
	Sprint Five: All Together

	Methods
	Intelligent Data Capture
	Intelligent Data Extraction
	Data transfer
	System

	Testing and validation
	Overall

	Conclusion
	Parts
	Intelligent Data Capture captures
	Sprints - Weekly reporting
	Requirements
	Minimal viable product description
	Review from the Rosalind Franklin Institute

